
2. MATHEMATICAL DESCRIPTION OF NOISE

2.1. Probability: p

A physical quantity, can be measured

pi of the ith event: pi ≈ Ni/N

N: number of experiments

Ni: number of desired events

Exactly: N->∞ stochasticconvergence
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2.2. Probability density

p(x)∆x ≈ Ni/N

N: number of experiments

the value found Ni times in x±∆x/2

Exactly: N->∞ and∆x->0
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Meaning: probability to find x in [x1,x2]:

Complete description of a random process?

pi or p(x)
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2.3. Distribution function

Meaning: P(value<x) = F(x)

Derivation from p(x):

2.4. Some practical quantities

Mean value:
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Variance, mean square:

Describes the "magnitude of fluctuations"

RMS or standard deviation:

2.5. Time dependence, stationarity,

ergodicity

p(x) can be time dependent: p(x,t)

A representative trajectory: x(t)

2-5



2-6



Stationaryprocesses: p(x,t)=p(x)

Ergodic processes: ensemble <-> time avr.

Example: mean value
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2.6. Correlation functions

How to tell something about the time

dependence of a random process?

- Trajectory: the most complete information

- But: too complex, simplification needed

- p(x,t), but "internal" dependencies?

2.6.1. Joint probability density

p(x1,t1,x2,t2)

2.6.2. Autocorrelation function:

Describes the "memory", internal structure of

the process.
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If depends on only t2-t1 (weak stationarity):

Ergodic process:

Properties:

Rxx(0)=VAR(x)=maximum

Rxx(τ)=Rxx(-τ)

Rxx(∞)=<x>2, if no periodic terms

Rxx(τ)=periodic for periodic signals
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Examples:

- converges to zero for most random signals

- can be used to extract signals from noise
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2.6.3. Cross correlation:

Extension of autocorrelation for two signals.

Describes time dependent relationship between

random processes.

If depends on only t2-t1 (weak stationarity):

Ergodic process:
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Properties:

Rxy(τ)=Ryx(-τ)

Rxy(τ)=0 for independent processes

Examples:

- can be used to extract common

components from signals

- measurment of propagation of noisy signals
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2.6.4. Autocorrelation of sum of multiple

processes

In general:

For independent processes:

2.7. Frequency domain description

Why is it important?

decomposition to sine waves useful for e.g.

description of linear systems:

- linear differential equations
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- description: g(t) transfer function

For sine input, the output is sine also.

Since f is invariant: g(t) -> A(f),φ(f)

2.7.1. Fourier transform

How to calculate the components?
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For periodic signals: Fourier series

The coefficients:
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Non-periodic signals:

Properties:

- linear transform

- derivation: dx/dt -> i2πfX(f)

- integration:∫xdt -> X(f)/i2πf

- convolution -> multiplication
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- real x(t): X(f)=X*(-f)

- x(t)=δ(t) -> X(f)=1

- x(t-τ) -> ei2πτX(f)

- Parseval equality:
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2.7.2. Power density spectrum

Definition: (Wiener-Khintchine relations)

Single-sided: S(f)=2Sxx(f), f:0..∞

Meaning: S(f)∆f = power in f±∆f/2

Total power of the signal:
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Energy spectrum: 2 X(f)2

Cross power density spectrum:

Sxy(f)=0 for independent processes

2.7.3. Power spectrum of sum of multiple

processes

In general:

For independent processes:
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2.7.4. Finite time analysis

Exact analysis needs infinite time for time

dependent averaging, correlation and spectral

analysis

Real systems: always finite time

Tradeoffs:

- cutting the signal by a window function to

0..T, e.g. w(t)=1, if tε[0,T]
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- periodic expansion of the signal-> discrete

spectrum at frequencies fn=n/T (Fourier-

series)

The lowest frequency can be analyzed: 1/T

2.7.5. Time dependent spectral analysis

What about non-stationary processes?

- Fourier transform: integrates over time,

washes out local time dependence

- E.g.:periodic signal with time dependent

frequency

Solution (approx.):

- choose a time interval, and sweep in time
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2.7.5.1. Wavelet analysis

Method of selection: a "window-function"

Often used:

2.7.5.2. Windowed Fourier transform

T finite time analysis, swept over time
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Here the width of w(t,τ) independent of f,

e.g.:
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2.8. Classification of noises according to

p(x), Rxx(τ) and Sxx(f)

Shape of p(x)

- uniform distribution

- normal or Gaussian distribution

- Poisson distribution

- Central limit theorem

y=Σxi -> Gaussian distribution
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Shape of Sxx and Rxx

- White noise (uncorrelated)

S(f)=const

R(τ) ∼ δ(τ)
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- Lorentzian noise

S(f) ∼ 1/(1+f2/fo
2)

R(τ) ∼ exp(-τ/τo), correlation time:τo=1/fo

2-27



- 1/f2 noise

S(f) ∼ 1/f2, non-stationary
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- 1/f noise (1/fκ noise, 0.8<κ<1.2)

S(f) ∼ 1/fκ
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- 1/f1.5 noise

S(f) ∼ 1/f1.5
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