2. MATHEMATICAL DESCRIPTION OF NOISE

2.1. Probability p

A physical quantity, can be measured
p;, of the ith event: p= N./N
N: number of experiments
N.: number of desired events

Exactly: N->o stochasticconvergence

1
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2.2. Probability density
P(X)Ax = N./N
N: number of experiments
the value found Ntimes in x#Ax/2

Exactly: N->0 and Ax->0

jp(x) dx=1
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Meaning: probability to find x in [x1,x2]:

P(x € [x1,x2] fp
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Complete description of a random process?

P, or p(x)
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2.3. Distribution function

Meaning: P(value<x) = F(x)

Derivation from p(X):

F(x) =fp<x/> dx’

2.4. Some practical quantities

Mean value:

<X =Z XD,
1

N.

<X>= =

<X =fx-p (x) dx
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Variance, mean sqguare:

Describes the "magnitude of fluctuations"

VAR (x) =< (x—<X> ) 2> =<KX?> —<x>?

RMS or standard deviation:

RMS (x) =< (x—=<3> ) 2> =/<x?> —<x>?

2.5. Time dependence, stationarity,
ergodicity
pP(X) can be time dependent: p(x,t)

A representative trajectory: x(t)
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N, (t)

1

plx, t)Ax = Iy

N=number of x(t)samples

Stationaryprocesses: p(x,t)=p(x)

Ergodic processes: ensemble <-> time avr.

Zo. .. D (x) dX_limeZ—lTjT' .. dt

Example: mean value

fx'p(x) dX:lime2—1TfX( t)dt
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2.6. Correlation functions

How to tell something about the time
dependence of a random process?

- Trajectory: the most complete information
- But: too complex, simplification needed

- p(x,t), but "internal" dependencies?

2.6.1. Joint probability density

P(Xy, 1, X5, 1)

2.6.2. Autocorrelation function:

Describes the "memory", internal structure of

the process.

R (t,, t,)=<x(t,) x(t,)>
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If depends on only t2-tlweak stationarity.

R, (t)=<Kx(C) x(C+1)>

XX

Ergodic process:

T
R (1) =1ime2_1fo< £) x(t+t) de
-7

Properties:

R,.(0)=VAR(X)=maximum
Ro(1)=Ru(-T)

R . (0)=<x>*, if no periodic terms
R..(T)=periodic for periodic signals
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Examples:

- converges to zero for most random signals

- can be used to extract signhals from noise

Amplitude

time

time 0
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2.6.3. Cross correlation:

Extension of autocorrelation for two signals.
Describes time dependent relationship between

random processes.

R, (t,, t,) =<x(t)) y(t,)>

If depends on only t2-tlweak stationarity.

R, (1) =<x(t) -y (t+1)>

Ergodic process:

T
: 1
R, (1) =11mTﬁmﬁfo< £) v (t+t) de
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Properties:

ny(T): Ryx(_T)

R,,(T)=0 for independent processes

Examples:

- can be used to extract common
components from signals

- measurment of propagation of noisy signals

R

XX
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2.6.4. Autocorrelation of sum of multiple
processes

In general:

R(t)=R,,(t)+R,, (t) +R, (1) +R,, (7)

For independent processes:

R(t)=R,, (1) +R,, (7T)

2.7. Frequency domain description

Why is it important?

decomposition to sine waves useful for e.g.
description of linear systems:

- linear differential equations
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- description: g(t) transfer function
y(e)=[x(t)gle-t))dt’
For sine input, the output Is sine also.

Since f is invariant: g(t) -> A(fyp(f)

2.7.1. Fourier transform

How to calculate the components?
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For periodic signals: Fourier series

x(t) =) Sicos(2nkf t+@,) =
k=0

Y} [Acos(2nkf t) +B;sin(2nkf t) ]
=0

o

i2mnkf t
>, CreE

k=-00

The coefficients:
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Non-periodic signals:

X (£) =fx< £) @ i2mftgg

x(t) =fx<f) ei2nftqF

Properties:

- linear transform

- derivation: dx/dt -> i12tX(f)
- integration:Jxdt -> X(f)/i2t

- convolution -> multiplication
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- real x(t): X(f)=X"(-f)
- X()=0(t) -> X(fH)=1
- X(t-T) -> €2™X(f)

- Parseval equality:

f|x<t> |2dt=f|x<f> 2df
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2.7.2. Power density spectrum

Definition: (Wiener-Khintchine relations)

= [R,.(£) e #7edt

= [ 5, (£) enitdr

Single-sided S(f)=2S,(f), f:0..00
Meaning: S(fAf = power in f£Af/2

Total power of the signal:

Var ( f S (f f (£) df
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Energy spectrum: 2 X(ff

Cross power density spectrum

S, (£) =R () e #27fedt

S,(f)=0 for independent processes

2.7.3. Power spectrum of sum of multiple
processes

In general:

S(f)=S,,(£)+5,,(£) +S,, (£) +S,, (£)

For independent processes:
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S(f)=8,, () +S,, (£)

2.7.4. Finite time analysis

Exact analysis needs infinite time for time
dependent averaging, correlation and spectral
analysis

Real systems: always finite time

Tradeoffs:

- cutting the signal by a window function to

0..T, e.g. w(t)=1, if ¢[0,T]

X, (£) =W(f) *X(f) =fw<f/>x<f—f/> dr
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- periodic expansion of the signal-> discrete
spectrum at frequencies=nh/T (Fourier-
series)

The lowest frequency can be analyzed: 1/T

2.7.5. Time dependent spectral analysis

What about non-stationary processes?

- Fourier transform: integrates over time,
washes out local time dependence

- E.g.:periodic signal with time dependent
frequency

Solution (approx.):

- choose a time interval, and sweep In time
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2.7.5.1. Wavelet analysis

Method of selection: a "window-function’

X(f, 1) :fw(t,’t) F(t) e i2rftgy

Often used:

w(t,t)= s

r
— &
JT

2.7.5.2. Windowed Fourier transform

T finite time analysis, swept over time
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X(f, 1) =fw(t,'c)x(t) e 12nftgs

Here the width of w(tf) independent of f,

e.g.:

1,1f te[t,t+T]
w(t,T)=

0, otherwise
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2.8. Classification of noises according to

P(x), R(T) and S,(i)

Shape of p(x)

uniform distribution

normal or Gaussian distribution

(x—<x>)7
plx)=—t o 20
V2T 07

Poisson distribution
Central limit theorem

y=2X; -> Gaussian distribution
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Shape of $ and R,

- White noise (uncorrelated)
S(f)=const

R(t) 05(1)

Amplitude

time

frequency
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Lorentzian noise
S(f) O 1/(A+F/f )

R(t) Uexp(x/t,), correlation timex =1/f,

Amplitude

time

log S (f)

log freq
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- 1/f? noise

S(f) O 1/f%, non-stationary
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- 1/f noise (1/f noise, 0.8k<1.2)

S(f) O 1/
(0)
O
3
-
,_|
g4 ¢
<
time
o
;’ -1
o
@)
,_|
log‘freq
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- 1/f*° noise

S(f) O 1/f°

Amplitude

time

log S (f)

log freqg
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