8. SOME RECENT RESULTS AND PROBLEMS IN

 NOISE RESEARCH8.1. New models and properties of $1 / f$ noise 8.1.1. Scaling Brownian motion
l/f noise:

- no general model
- not completely understood
- very wide range occurance in nature
=> New models required

Possibilities:

- searching for systems having $1 / \mathrm{f}$ noise inherently
- searching for a simple method for generating 1/f noise
- deriving $1 / \mathrm{f}$ noise from other well known noises (white, Lorentzian, 1/f²)

Generating $1 / \mathrm{f}^{2 \mathrm{n}}$ noise is easy:

- integrating or differentiating white noise

Other noises (e.g. $1 / \mathrm{f}^{\mathrm{K}}$)

- weighted sum of Lorentzians

- non-linear transforms
- special algorithms
- solution of a differential equation

Generating 1/f noise:

try a simple recursive algorithm:

$$
\begin{gathered}
x(t+\tau)=f(x(t)) \\
x_{i+1}=f\left(x_{i}\right)
\end{gathered}
$$

e.g. random walk:

$$
x_{i+1}=x_{i}+W_{i}
$$

However, $1 / \mathrm{f}$ is not Markovian, it does not work.

Proof:

- measure $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)$ for $1 / \mathrm{f}$ noise
- generate random variable with this distribution

$$
x_{i+1}=\frac{2}{3} x_{i}+w_{i}
$$

which results Lorentzian noise

Another possibility: scaling

$$
y(t)=f(x(t))
$$

where $\mathrm{x}(\mathrm{t})$ is a noise, e.g. $1 / \mathrm{f}^{2}$
For $1 / \mathrm{f}^{\mathrm{k}}$: symmetrized power function

$$
f(x)= \begin{cases}x^{\alpha} & \text { if } x>0 \\ 0 & \text { if } x=0 \\ |x|^{\alpha} & \text { if } x<0\end{cases}
$$

Examples:

8.1.2. Amplitude saturation of $1 / f$ noise $1 / \mathbf{f}^{\text {k }}$ noise

- discovered a long time ago
- general occurance in nature

Several problems

- origin not completely understood
- properties not completely known

Further investigations, models required

Non-linear transformations of $\mathbf{1 / f}{ }^{\mathbf{k}}$ noises

- Amplitude distibution : usually not a problem.
- Power spectrum, autocorrelation?

Amplitude truncation using two levels:

Important observation for 1/f noise (simulation, measurement) :

The power spectrum remains 1/f

Preconditions?

True for any level, even for assymetric cases.

8-11

8-12

Other 1/f ${ }^{\text {k }}$ noises?

$1 / \mathrm{f}^{2}: 1 / \mathrm{f}^{1.5}$, only for ZCD! (theoretical) corner point depending on the truncation levels.

$1 / \mathrm{f}^{1.5}: 1 / \mathrm{f}^{1.3},-{ }^{-"-\text {, no theory }}$

$1 / \mathrm{f} \quad: 1 / \mathrm{f}-$ is it exactly true?
$1 / \mathrm{f}^{0.5}: 1 / \mathrm{f}^{0.5}$
white : white - not suprising

Questions, problems:

- spectrum is invariant against any truncation -> only the zero crossing time instants responsible for $1 / \mathrm{f}$ spectrum ?
- theory?
- find the preconditions:
- only gaussian noises? - There are exceptions.
- other transformnations? / $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \ldots /$
- how many possibilities to "make $1 / \mathrm{f}$ from 1/f" ?
- convergence : $1 / \mathrm{f}^{2}$-> $1 / \mathrm{f}^{1.5}$-> ... -> $1 / \mathrm{f}$?
- useful to understand the generality of $1 / \mathrm{f}$ noise?
- find the systems, that can produce this kind of transformation
- experiments, further investigations required

8.2. Stochastic resonance

Stochastic resonance (SR):

- input : periodic signal and noise
- SNR at the output (at the input frequency) has a maximum vs. input RMS of noise

8-18

Simple bistable system producing SR

 Output signal $=$ position of the particle.

$\mathrm{U}(\mathrm{x}, \mathrm{t})=-\mathrm{ax}^{2}+\mathrm{bx}{ }^{4}+\varepsilon \mathrm{x} \sin (\omega \mathrm{t})$

Sample output waveform

SIN $=0.1$

$$
\operatorname{SIN}=0.49 \quad D=0.02
$$

$$
\mathrm{U}(\mathrm{x}, \mathrm{t})=-\mathrm{ax}{ }^{2}+\mathrm{bx} \mathrm{x}^{4}+\varepsilon \mathrm{x} \sin (\omega \mathrm{t})
$$

Solution by analog computer:

Analog simulations using a Schmitt-trigger:

Stochastic resonance occurs in:

- ice ages (fisrt system for introducing SR, Benzi, Nicolis, 1981),
- meteorological phenomena
- digitized data (dithering method)
- laser with saturable absorber
- ring laser (McNamara,Wiesenfeld,Roy 1988)
- chaotic systems
- detecting noisy magnetic fields, SQUID
- biological systems, neurons (firing)
- bi- and multistable systems

Possible applications of SR

- detecting signals in noisy systems
- information processing, transmitting
- understanding physical and biological systems, proposing models

Analyzing $S R$ theoretically and experimentally

 Quantities:

 Quantities:}
$\mathrm{x}(\mathrm{t})$ amplitude
$\mathrm{S}(\mathrm{f})$ power spectral density
$\mathrm{p}(\mathrm{x})$ probability densisty
$\mathrm{p}(\tau)$ residence time statistics
SNR signal-to-noise ratio

Theories

- McNamara,Wiesenfeld adiabatic approximation
- Hanggi-Jung theory
- Dykman, LRT

Experimental analysis

- measurements in (S(f), p(τ), stb.) systems showing SR (laser, SQUID, neurons, etc.)
- analog simulations (diff.eq. solutions)
- numerical simulations

New results

- \quad SR with coloured noises (1/f, Lorentzian) Hanggi, Moss, Kiss,Gingl, 1992
- Non-dynamical SR, Moss, Wiesenfeld, Kiss,Gingl, 1993-1995
- Improving SNR ?, Kiss, 1995, Kiss, Gingl, Lorincz (1996) SNR Out > SNR In ?

Non-dynamical SR

(Gingl et. al. invited talk, Int.Conf. on
Fluctuations in Physics and Biology, Elba, Italy, 1994)

The simplest system showing SR, the levelcrossing detector (LCD) (Moss, 1993)

Gaussian noise+periodic signal > threshold -> impulse at the output

Theory (Kiss, 1994)

- slow, weak modulation of frequency of the pulses, Gaussian noise

$$
\mathbf{U}_{\mathbf{A V}}=v \mathbf{A} \tau \quad \Rightarrow \quad \mathbf{U}_{\mathbf{A V}}(\mathbf{t})=v(\mathbf{t}) \mathbf{A} \tau
$$

- theoretical result: S-N and SNR

$$
S-N=\frac{\text { const } e^{-\left(U_{t} / D\right)^{2}}}{D^{4}}
$$

- second harmonic: two maximuma in SNR (Lőrincz)

$$
S-N=\operatorname{const} \frac{\left(U_{t}^{2}-D^{2}\right)^{2} e^{-\left(U_{t} / D\right)^{2}}}{D^{8}}
$$

Experimental study (Gingl, 1994)

- analog and numerical simulations
- verification of theory, extensions

LCD SR system

Fundamental SR system:

- extension of SR (new system)
- simplest
- non-dynamical
- process independent of frequency
- theory:linear,adiabatic approximation
- level-crossing also in dynamical systems
- SR depends on the level-crossing
statistics of noise, even in dynamical systems

8.3. Biased percolation model of device degradation

Failure of electronic devices

(resistors,transistors,contacts,ICs)

Problems: (critical apps.)

- is the device reliable?
- how close the device to the failure?
- excitations to test state? (in use; affect state)
- what we need to be measured?
$/ R, \sigma, T, \delta R, S(f), \ldots /$

New percolation model (1995,
NODITO,Brno)

Percolation :

- randomly changing state of elements of a structure
- successful applications in many systems (spin, high Tc superconductors, phase transitions, ...)

Homogeneous thin film resistors

Simple model, network of uniform resistors

Time evolution of state

position of elements : i, j probability of failure of an element : $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$ of $\mathrm{R}_{\mathrm{i}, \mathrm{j}}>\mathrm{inf}$

- $\mathrm{p}_{\mathrm{i}, \mathrm{j}}=$ const $\quad->$ "free" percolation
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}}=\mathrm{p}_{\mathrm{o}} \exp \left(-\mathrm{E}_{\mathrm{o}} / \mathrm{kT}_{\mathrm{i}, \mathrm{j}}\right)$-> "biased" percolation

$$
\mathrm{T}_{\mathrm{i}, \mathrm{j}}=\mathrm{T}_{\mathrm{o}}+\mathrm{B} * \mathrm{I}_{\mathrm{i}, \mathrm{j}}^{2} * \mathrm{R}_{\mathrm{i}, \mathrm{j}} \quad \text { Joule-heating }
$$

Free percolation

Biased percolation

Monte-Carlo simulations

Random decisions using $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$ values in every step, transform the lattice to the new state: - we have a given state of the sample, then

1. calculate all currents flowing in resistors
2. calculate all probabilities $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$
3. change the state of all resistors randomly using $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

How to calculate the currents?

$\mathrm{U}=\mathrm{R}$ *I

Size of network : n x n
equations: $k=n^{2}+1$
resistors: $2 \mathrm{n}(\mathrm{n}+1)$
>0 coeffs.: $<(2 \mathrm{n}+1)\left(\mathrm{n}^{2}+1\right) \quad$ vs. $\left(\mathrm{n}^{2}+1\right)^{2}$
Operations: $<(2 \mathrm{n}+1)^{2}\left(\mathrm{n}^{2}+1\right) / 2$ vs. $\left(\mathrm{n}^{2}+1\right)^{3} / 2$
100×100-> 20200 resistors, 10001 equations

Free percolation

$8-44$

Biased percolation

Time evolution of sample resistance and noise

Noise properties
Spatially equally distributed, independent Lorentzian fluctuations with, different correlation times:

$$
S(f)=\alpha \int_{\tau_{1}}^{\tau_{2}} \frac{\tau g(\tau)}{1+(2 \pi f)^{2} \tau_{i}^{2}} d \tau
$$

Distribution of τ is $g(\tau)=c / \tau \quad$-> $1 / \mathrm{f}$ noise.

$8-48$

Results

- A new model for faulire of electronic devices based on percolation

MC simulations for free and biased percolation:

- $R(t)$
- Distribution of current density, Joule power
- Noise spectrum of the system

Further development

- noise temperature
- $\quad \delta$ R vs. R
- how to predict failure of devices using this model
- other structures, e.g. disordered
- 3D modellings

